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Abstract Video object segmentation is an important
pre-processing task for many video analysis systems.
To achieve the requirement of real-time video analy-
sis, hardware acceleration is required. In this paper,
after analyzing existing video object segmentation algo-
rithms, it is found that most of the core operations can
be implemented with simple morphology operations.
Therefore, with the concepts of morphological image
processing element array and stream processing, a
reconfigurable morphological image processing accel-
erator is proposed, where by the proposed instruction
set, the operation of each processing element can be
controlled, and the interconnection between processing
elements can also be reconfigured. Simulation results
show that most of the core operations of video object
segmentation can be supported by the accelerator by
only changing the instructions. A prototype chip is
designed to support real-time change-detection-and-
background-registration based video object segmen-
tation algorithm. This chip incorporates eight macro
processing elements and can support a processing
capacity of 6,200 9-bit morphological operations per
second on a SIF image. Furthermore, with the pro-
posed tiling and pipelined-parallel techniques, a real-
time watershed transform can be achieved using 32
macro processing elements.
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1 Introduction

Video object segmentation is the technique which
can generate object shape information from video se-
quences. It is the key operation for content-based
video coding systems, such as MPEG-4, to realize
content-based coding functionalities. It is also the key
pre-processing for many video analysis systems. For
example, for an intelligent video surveillance system,
the object location and shape information are impor-
tant for object behavior analysis, object recognition,
and video indexing.

Several video segmentation algorithms have been
proposed [4, 5, 7, 12, 13, 19, 20, 27, 29, 30, 32, 35].
Most of these algorithms can be covered by the video
segmentation framework proposed in MPEG-4 stan-
dard [21], which is shown in Fig. 1. Camera Motion
Compensation and Scene Cut Detection first compen-
sate the effect of camera motion and detect when scene
change occurs. Temporal Segmentation segments video
sequences with temporal information, such as motion
information and change detection. Spatial Segmenta-
tion detects spatial information of video sequences such
as edge information and region information from image
segmentation, and it combines this information with the
segmentation results of Temporal Segmentation. The
output of a video segmentation system can come from
the combined results of both segmentation subsystems
or only the results of Temporal Segmentation. In [36], it
is shown that the most popular temporal segmentation
algorithm is change detection where the most popular
spatial segmentation algorithm is watershed transform.

Among these algorithms, however, no single algo-
rithm is suitable for all kinds of situations. For exam-
ple, our algorithm [7] can deal with still camera and
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Figure 1 Video segmentation framework in Annex-F of MPEG-
4 standard.

multiple objects situations with real-time performance
on QCIF format video, and the modified one [5] can
deal with slightly moving cameras; Kim’s algorithm
[20] and Mech’s algorithm [19] can generate accurate
segmentation results, but the computational complexity
is very high; Meier’s algorithm [20] can deal with mov-
ing camera situations, but the complexity is also high
and the segmentation results are sometimes not good
enough; Wang’s algorithm [32] is very useful for semi-
automatic video segmentation for off-line video editing,
but it is hard to be applied in real-time applications.

On the other hand, video object segmentation can
be used for many real-time applications, for example,
real-time content-based coding applications such as
video camcorders, video phones, and video conference
systems. It is also very useful as a pre-processing for
real-time video analysis applications such as video sur-
veillance and intelligent car driving systems. However,
for SIF format or other larger frame size, even with
a fast algorithm [7] and a powerful microprocessor, it
is still very hard to achieve the real-time requirement
of 30 frames/s. Therefore, hardware implementation of
video segmentation is necessary. Besides, the system
should be flexible since there is still no general solution
for video segmentation, and different algorithms should
be adopted for different situations. Consequently, for
a wider range of applications, a hardware accelerator
which can accelerate different segmentation algorithms
with an unified architecture is urgently needed.

In this paper, a reconfigurable hardware accelerator
for both spatial and temporal segmentation of video

object segmentation is proposed. The core of this accel-
erator is a reconfigurable morphological image process-
ing element (PE) array. For different algorithms, the
PE array can be re-programmed to perform different
operations, and the interconnection between the PEs
can also be reconfigured to meet the requirements. The
target algorithms to be accelerated are the most impor-
tant algorithms but also all other algorithms developed
with similar core operations.

This paper is organized as follows. Existing algo-
rithms are first analyzed in Section 2. After that, in
Section 3, core operations of video segmentation are
mapped to morphological operations [26, 28]. Section 4
and Section 5 show the proposed architecture and the
optimization issues for this architecture, respectively.
Then Section 6 shows the implementation results.
Finally, Section 7 gives a conclusion of this paper.

2 Analysis of Existing Algorithms

Ten algorithms are analyzed in this section. These
algorithms represent most of the existing video segmen-
tation algorithms. Change detection is widely used in
many algorithms [7, 13, 19]. Our prior video segmen-
tation algorithm is designed for still-camera situations
[7]. It is based on change detection and background
registration techniques. A gradient filter is used to
eliminate light changing and shadow effects, and a
post-processing algorithm, which includes region size
filtering and morphological close-open operations, is
used to improve the segmentation results. Kim’s algo-
rithm [13] combines change detection and watershed
[31] as a spatio-temporal segmentation algorithm. This
algorithm can give better segmentation results, but with
larger computation power. Mech’s algorithm [19] is
also based on change detection. A boundary relaxa-
tion algorithm is applied to improve the boundary
of the change detection mask (CDM). The uncover
background problem of change detection, that is, the
uncover background regions are usually misclassified
to foreground objects, is eliminated with motion infor-
mation derived by optical flow, and edge detection
and edge fitting are used to fit CDM to edges of a
frame. In some algorithms, edge information is used as
the input data instead of pixel values of input frames.
Meier’s algorithm [20] segments video objects on edge
frames generated with a Canny edge detector [3]. A
morphological motion filter [9, 25] is used to find the
outlier parts of a frame with motion information, and
a Hausdorff distance is applied to track the edges of a
video objects. This algorithm can be used for moving
camera situations; however, the accuracy may be not
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as good as those of other algorithms. Kim’s algorithm
[12] employs the similar concepts to reduce the com-
plexity of the algorithm by detecting changing parts
of the edges. In addition, many algorithms employs
watershed transform [31] to segment input frames into
several non-overlapped regions, and then these regions
are tracked and merged to form video objects. Wang’s
algorithm [32] applied a watershed transform on the
gradient image derived with a multiscale gradient
operation. After segmenting a frame into many regions,
a motion tracking and projection algorithm is used to
track each region between consecutive frames. Tsaig’s
algorithm [30] employs similar concepts with water-
shed and hierarchical region matching. An extension
of the conventional watershed transform, 3-D water-
shed, is proposed by Tsai et al. [29], and a Bayesian
approach is proposed to merge watershed volumes
to form video objects. These algorithms can also be
used in moving camera situations and give accurate
segmentation results; nevertheless, it is quite complex
and requires enormous computation power. Moreover,
some algorithms employ motion segmentation, where
motion vectors are clustered to derive regions with
homogeneous motion features. Shamim’s algorithm is
an example of this kind of algorithm [27]; however, the
computational complexity is very high. Finally, many
algorithms use a hybrid approach with the above con-
cepts, such as Xu’s algorithm [35]. The core operations
of these algorithm are shown in Table 1.

Many of the core operations in these algorithms are
the same, and they can be classified into five types: mor-
phological operations, region growing operations, pixel
operations, motion estimation related operations, and
others operations, as shown in Table 2. Mathematical

Table 1 Core operations of each video segmentation algorithm.

Algorithm Core operations

Ours [7] Gradient, change detection,
background registration, post-processing

Kim [13] Change detection, watershed
Mech [19] Change detection, relaxation, optical flow,

edge detection, edge fitting
Meier [20] Morphological motion filter, optical flow,

Canny edge detection, Hausdorff distance
Kim [12] Canny edge detection, morphological operation
Wang [32] Multiscale gradient, watershed,

motion tacking and projection
Tsaig [30] Watershed, hierarchical region matching
Tsai [29] 3-D watershed, Bayesian volume merging
Shamim [27] Global-to-local motion segmentation,

morphology operations
Xu [35] Motion segmentation, Canny edge detection,

Hausdorff distance, watershed

Table 2 Classification of the core operations of video
segmentation.

Operation type Associate core operations

Morphological Gradient, post-processing, watershed,
operation multiscale gradient

Region growing Watershed, edge fitting, morphological
operation motion filter, Hausdorff distance

Pixel operation Change detection, background registration
Motion estimation Optical flow, motion tracking and

related projection
Other Relaxation, Canny edge detection

morphological operations are based on two basic oper-
ations: dilation and erosion, and both binary and gray-
scale morphological operations are included. Note that
the watershed transform usually requires close-open
operations to simplify a frame and a gradient operation
to generate gradient images, so the watershed trans-
form can be categorized as a morphological operation.
Many core operations are region growing operations.
The watershed transform is also one of them. Note
that the MAX-Tree (MIN-Tree) generation and dis-
tance transform of morphological motion filter and
Hausdorff distance are also region growing operations.
Pixel operations are operations independent between
pixels. The computational load of this kind of oper-
ations is low and can usually be accelerated with
sub-word parallel instructions, such as Intel MMX
instructions [23]. Motion estimation related operations
generate motion field information with motion estima-
tion algorithms. The computational load of these kind
of operation is quite large.

Since the computational load of pixel operations is
usually low, and the hardware of motion estimation is
an essential part in a video encoding system, these two
kinds of operations are not taken into consideration
in this paper. Moreover, we found that region grow-
ing operation can also be mapped to morphological
operations [26, 28]. Canny edge detection, in addition,
can be replaced with an edge detector based on the
morphological gradient operation, and the morphology
based post-processing of our algorithm can achieve spa-
tial homogeneity as relaxation. Therefore, most of the
core operations of video segmentation can be mapped
to morphological operations. In order to accelerate
video object segmentation, the accelerator or processor
which can execute different types of morphological
operations is a good choice. Detailed methods to map
these core operations to morphological operations will
be discussed in the next section.

Similar concepts have been proposed in other lit-
eratures. The PIMM1 (Processor Integre de Mor-
phologie Mathematique) of Center de Morphologie
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Mathematique [15] is one of them. It is a programmable
morphological image processor which can execute eight
binary morphological operations in parallel or pipeline,
one gray-level morphological operation, or one recur-
sive morphological operation. Also, twelve PIMM1
chips are employed in a real-time road segmentation
system in the European PROMETHEUS project [24]
with other processors. This chip is designed for image
analysis applications; however, for video segmentation
applications, many parts of this chip are redundant,
and it is not cost-effective. Moreover, one chip can
only execute one gray-level morphological operation.
The computing power is too small without a multi-
chip configuration for a video segmentation system.
There is another processor for morphological opera-
tions with an FPGA structure [33, 34]. With a pipelined
architecture, which is combined with several FPGAs,
FIFOs, and triple-port memories, this system can be
reconfigured to any operations including morphological
operations, median filter, and convolution. However,
this system has several drawbacks: the programming
time of the FPGA takes tens to hundreds milliseconds,
which means it is not suitable to be programmed on-
the-fly in a real-time system; furthermore, the system
is designed for real-time pre-processing, that is, only
low-level and simple operations can be supported, and
complicated morphological operations in video seg-
mentation cannot be executed in this system.

Consequently, in this paper, a reconfigurable mor-
phological image processing accelerator is developed
for image/video segmentation. Stream processing con-
cept is employed to increase the efficiency of the data
flow. In addition, the programming time is very short
because the reconfigurable circuits are not for general-
purpose applications. Therefore, the hardware can be
programmed on-the-fly, which can further reduce the
hardware cost, since the resource can be shared not
only spatially but also temporally.

3 Mapping Core Operations to Morphological
Operations

In this section, the core operations of video segmenta-
tion are mapped to morphological operations.

3.1 Gradient

First of all, the gradient operation can be shown as the
following equation:

GRA = I ⊕ B − I � B, (1)

where ⊕ is dilation, � is erosion, I is input image,
and B is structuring element. It is a combination of
morphological operations [26].

On the other hand, the multiscale gradient operation
[32], which can be used to enhance ramp edge informa-
tion, can be described as follows:

MG = 1

3

3∑

i=1

[
(I ⊕ B2i+1 − I � B2i+1) � B2i−1

]
, (2)

where Bn denotes a nxn structuring element. It is origi-
nally a morphological operation.

3.2 Post-Processing of Change Detection
Based Algorithm

The post-processing of our algorithm [7] includes re-
gion size filtering and close-open operations. The re-
gion size filtering can be replaced with dilation and
conditional erosion (geodesic erosion) operations [26]:

(((I ⊕ Bn)�B3; I) . . . � B3; I)︸ ︷︷ ︸
l

, (3)

where l > (n − 1)/2, n is proportion to the smallest
allowed region size, and the conditional erosion is

(X � B; Y) = (X � B) ∪ Y. (4)

Moreover, the closing and opening operations are orig-
inally morphological operations. which can be shown as
the following equations:

I ◦ B = (I � B) ⊕ B, (5)

I • B = (I ⊕ B) � B, (6)

where ◦ is opening, and • is closing. These operations
can also be employed for other change detection based
algorithms.

3.3 Watershed Transform

The watershed transform [31] can separate an image
into many homogeneous non-overlapping closed re-
gions. It has four main steps: simplification, gradient,
sorting, and flooding. The simplification and gradient
are morphological operations. The sorting can be effi-
ciently implemented with address sort [31], whose com-
putational complexity is low enough to be afforded
by general-purpose processors; however, the computa-
tional load of flooding process is high. Fortunately, the
flooding process, which is a region growing operation,
can be mapped to masked morphological erosion op-
erations, which is easy to describe with an example.
Figure 2a shows the gray level values of a gradient
image. Each pixel is then given an unique label from
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Figure 2 Map flooding process of watershed transform to
masked morphological erosion operation (a–g).

low gray-level to high gray-level in raster scan order,
as shown in Fig. 2b. For example, there are six pixels
valued 0 in Fig. 2a, and each pixel is given a label from 0
to 5, from top to bottom and from left to right in Fig. 2b.
Similarly, there are also six pixels valued 1 in Fig. 2a,
and each pixel is given a label from 6 to 11, from top
to bottom and left to right in Fig. 2b. Note that, based

on the address sort concept, the computational load
of this procedure is low. After that, masked erosion
operations are applied, that is, erosion operations are
applied only on pixels within a mask. For example, the
mask of gray-level 0 is shown in Fig. 2c with gray color,
where the pixel values are 0 in Fig. 2a. After Fig. 2c
is processed by masked erosion operations only in the
gray regions until no change occurs, the result is shown
as Fig. 2d. For gray-level 1, the mask is shown in Fig. 2e,
and the masked erosion result is shown in Fig. 2f. If the
same operations are applied gray-level by gray-level,
the result is shown in Fig. 2g, where the bold line shows
the watershed. Therefore, the watershed transform can
be mapped to masked erosion, and the result is the
same as that of conventional watershed transform.

3.4 Hausdorff Distance

The distance transform is very important in the image
analysis and computer vision algorithms, and is the
essential operation to calculate Hausdorff distance. It
can also be carried out with morphological operations:

Distance = X −
maxdistance−1∑

i=0

(BEdge ⊕ Di), (7)

where Distance is the result of the distance transform,
maxdistance is the maximum distance allowed in the
distance transform, X is an image with all pixel val-
ues equal to maxdistance, BEdge is a binary image,
where edge pixels are valued 1, and other pixels are
valued 0, and Di is a disk-shaped structuring element
with diameter i. An example, D2, is shown in Fig. 3.
Note that disk-shaped structuring element is used for
the city block distance transform. An example of the
distance transform implemented with morphological
operations is demonstrated in Fig. 4, where Fig. 4a is
BEdge, Fig. 4b is X, Fig. 4c is the result of the distance
transform, Distance. Note that the allowed maximum
distance in this example is 4.

Figure 3 Disk-shaped
structuring element with
diameter 2, D2.
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Figure 4 Distance transform
with morphology operations
(a–c).
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3.5 Edge Detector

The Canny edge detector [3] is optimized for the ability
of edge detection and localization. Experiments show
that edge detectors based on morphological gradient
also have a good ability of edge detection; however,
the edge localization is poor. It can be further improved
with erosion operations using the following equations:

Edge = Th(GRA) � D1 − Th(GRA) � D1 � D1, (8)

where Th(.) is a thresholding operation, and GRA is the
gradient image derived with Eq. 1.

The performance comparison of this edge detector
and the Canny edge detector is shown in Fig. 5, where
the 50th frame of the sequence Hall Monitor is taken
as an example. The implementation of the Canny edge
detector in the OpenCV library [1] is used to generate
Fig. 5a, where the first threshold is set as 133 and
the second threshold is set as 399. The result of the
proposed edge detector is shown in Fig. 5b with the
threshold of 25. It is very similar to the result of the
Canny edge detector. If we set the result of the Canny
edge detector as the ground truth and assume the
detected edges are true when the distance to the true

edges are less than 1, the precision and recall are both
89%. Note that, since the proposed edge detector is
still not equivalent to the Canny edge detector, if the
Canny edge detector is still required, it is recommended
to integrate another accelerator of the Canny edge de-
tector in the proposed morphological image processing
accelerator.

3.6 Edge Fitting

The edge fitting operation can be simply mapped to
morphological operations with the following equation:

((((((CDM ⊕ Bn)�B3; Edge) . . . � B3; Edge)︸ ︷︷ ︸
l

�Bn)⊕B3; Edge) . . . ⊕ B3; Edge)︸ ︷︷ ︸
l

⊕B3 � B3, (9)

where CDM is change detection mask generated with
change detection operation, l = (n − 1)/2, and n is the
distance range of edges to be fitted. It is a combination
of dilation, conditional erosion, erosion, conditional
dilation, and closing. The effect of the edge fitting
operation is shown in Fig. 6.

Figure 5 a Results of Canny
edge detector. b Results
of morphological edge
detection operation.

(b)(a)
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Figure 6 Results of morphological edge fitting operation.

In summary, the gradient, multiscale gradient, post-
processing, watershed transform, morphological motion
filter, Hausdorff distance, edge detection, and edge fit-
ting can be mapped onto simple morphological opera-
tions: dilation, erosion, conditional erosion, conditional
dilation, masked dilation, and masked erosion [26].

4 Proposed Architecture

4.1 Overview of the Proposed Hardware Accelerator

The video analysis system with the proposed recon-
figurable morphological image processing accelerator
is shown in Fig. 7. In order to support a variety of
morphological operations, a programmable device is
more suitable. Moreover, an array processor is a good
choice to support high processing speed for real-time
applications. Data access is usually the bottleneck for
a good system performance for image/video process-
ing systems. In order to improve the efficiency of this
accelerator, the stream processing concept is employed
[11], which is also employed in many stream processors.
That is, the input and output data of the accelerator
are modeled as streams, which consists of many stream
elements in the same data type. The operations of the
accelerator are separated into stream data accessing
and stream data manipulation (kernel). In a stream
processing model, the same kernel function is applied
on the stream elements one-by-one [11], where the
input stream and output stream are sequentially read-
in and write-back from/to the off-chip stream buffers.
The multiple Off-Chip SDRAMs in Fig. 7 are used as
the stream buffers. In order to reduce the load on the
system bus, only two 32-bit channels, one for the input
stream, and the other one for the output stream, are
required for the proposed accelerator. The DMA unit
in Fig. 7 can help loading instructions from SDRAM to
the Instruction Memory of the Reconfigurable Morpho-
logical Image Processing Accelerator. The CPU in this
system is used as a controller, which is also responsible

for several system tasks. Note that, for executing video
analysis algorithms, the Reconfigurable Morphological
Image Processing Accelerator only plays a role to accel-
erate the operations of video object segmentation.
Other operations of video analysis are executed by the
Other Processors in Fig. 7, which can be powerful DSPs,
vision processors, and stream processors.

In the Reconfigurable Morphological Image Process-
ing Accelerator, the modules can be classified into a
stream data accessing part and a kernel part. The
stream data accessing part is composed of a Bus/DMA
Interface, Input Stream Register File, and Output Stream
Register File. The Bus/DMA Interface can work as a
master interface to access data stream from SDRAM
via a System Bus. A part of the stream data is stored
in the Input Stream Register File, and after the data
is processed by the kernel part and stored into the
Output Stream Register File, the output stream data is
then stored back to the SDRAM. The kernel parts is
composed of Control, Instruction Memory, and Recon-
figurable PE Array. The Control unit decodes instruc-
tions from the Instruction Memory to reconfigure the
Reconfigurable PE Array as the datapath to process the
input stream data.

4.2 Instruction Set Architecture

Before designing the detailed hardware architecture,
we first propose the instruction set architecture of
the morphology accelerator. The instruction format is
shown Fig. 8. Each instruction has 24 bits, including a
3-bit operation code (OP code), and a 21-bit operand.
According to Section 3, there are five kind of operations
to be executed as shown in Table 3: the “exit” operation
is the end of the program, whose mnemonic is EXT;
normal operation means normal morphological oper-
ations, such as dilation, conditional dilation, masked
dilation, ... and so on, whose mnemonic is NOR; for
watershed transform, a “loop until no change (idempo-
tent)” operation is required, whose mnemonic is LUN;
STH is the operation to set the threshold parameters
for the PE array; “change PE array” operation, CPE,
can program the rest PEs of the PE array with no op-
eration, and the instruction behind CPE will be always
executed by the first PE of the array, which is often used
before the STH instruction.

The detailed instruction format of each operation is
expressed in Fig. 9. For the EXT and CPE operations,
the operand field is not required, as shown in Fig. 9a.
For the NOR and LUN operations, the instruction for-
mat is more complicated as shown in Fig. 9b. It is very
similar to very-long-instruction-word (VLIW) scheme
of several modern DSPs, where several instructions
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Figure 7 Overview of the
proposed morphological
image processing accelerator.
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for different processing units are combined in a long
instruction word which can be executed at the same
time. Each PE can be programmed as byte mode or
word mode using the 12th bit. When the 12th bit is 0, the
PE can execute two 9-bit gray-level morphological op-
erations at the same time with two sub-PEs. Bits 20–17
form the operation code for the MSB sub-PE, and bits
16–13 form the operation code for the LSB sub-PE. For
each sub PE, one of the following 13 operations can be
executed: no operation (NOP), normal eight-connected
dilation (N8D), normal eight-connected erosion (N8E),
normal four-connected dilation (N4D), normal four-
connected erosion (N4E), masked eight-connected di-

lation (M8D), masked eight-connected erosion (M8E),
masked four-connected dilation (M4D), masked four-
connected erosion (M4E), conditional eight-connected
dilation (C8D), conditional eight-connected erosion
(C8E), conditional four-connected dilation (C4D), and
conditional four-connected erosion (C4E). Note that
eight-connected operation means the structuring ele-
ment is a 3 × 3 square, and four-connect operation
means the structuring element is a cross. When the
12th bit is 1, the PE can execute one 18-bit gray-level
morphological operations, where the operation code of
the two sub-PEs should be the same. Bits 11–6 are used
to configure the inter-connection routing between PEs.

Figure 8 Instruction format
of the proposed accelerator.

OP Code Operand

2123 0
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Table 3 Operation code of the accelerator.

OP Code Mnemonic Operation

000 EXT Exit, end of the program
001 NOR Normal mode
010 LUN Loop until no change mode
011 STH Set threshold
100 CPE Change PE array, start at the first PE

For the routing switch of the MSB channel, LSB chan-
nel, and reference channel, two bits are used to repre-
sent the configurations. Details of the inter-connection
unit will be described in Section 4.4. Execution Times
is a 6-bit field which indicates how many times the
operation should be executed, that it, how many PEs
are required to be programmed with the instruction.
The design of this field can reduce the length of the
program and save the size of the instruction memory.
Note that, for the LUN operation, this field is neglected.
Finally, for the STH operation, two 8-bit operands are
required to set the two threshold parameters in the PE
array, as shown in Fig. 9c.

Based on the instructions defined in this subsection,
the hardware architectures of the control unit and the
PE array can be designed, which are described in the
next two subsections.

4.3 Architecture of Control Unit

The control unit should be able to support zero-
overhead loop, in-place operation, and self-control
abilities to reduce the computational load of the host
CPU and the traffic load of the system bus. It im-
plies that the control unit should be able to execute
instructions and control the PE array without the help
of the host CPU. For the LUN operation described in
Section 4.2, the control unit can watch the PE array and
loop it until no change occurs.

The detailed signals to be controlled by the control
unit are shown in Fig. 10. There are five main parts in
the control unit: program counter (PC), instruction reg-
ister (IR), input address generator (Input AG), output
address generator (Output AG), and finite state machine
(FSM). The PC is used to record the pointer to the
instruction to be executed in the Instruction Memory,
and the instructions are fetched and decoded to gen-
erate control signals for each PE. The control signals,
which are 15-bit for each PE, are stored in the IR to
control the Reconfigurable PE Array. The Input AG
and the Output AG are used to control the Bus/DMA
Interface to read-in the input stream and write-back
the output stream to the associated addresses of the
off-chip stream buffers. The FSM is the core of the

Figure 9 Instruction format
of operation a EXT/CPE,
b NOR/LUN, c STH. 000/100 x

2123 0

(a)

001/010 MSB PE

23 0

B/WLSB PE 1
Interconnection
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Reconfigurable PE Array

FSM

IR

PCInstruction
Memory

Output
AG

Input AG

Bus/DMA Interface

Control Unit

Figure 10 Detailed signals to be controlled by Control Unit.

control unit. It is responsible to control the other four
parts, fetch and decode the instructions, watch if change
occurs in the PE array, and communicate to the host
CPU with the Bus/DMA Interface.

4.4 Architecture of Reconfigurable PE Array

The architecture of the Reconfigurable PE Array is
shown in Fig. 11. It consists of several PEs and Pro-
grammable Interconnection Units. They can execute
several instructions in a pipelined manner to increase
the level of parallelism without increasing the require-
ments of the input/output data bandwidth. For each
PE, a 9-bit control signal is required to decide the
operation of the PE, and for each Programmable In-
terconnection Unit, a 6-bit control signal is required to
configure its routing. Two global threshold parameters,
Tha and Thb, can be used for thresholding and masked
operation. The input and output data are 26-bit, which
include a 9-bit MSB channel, a 9-bit LSB channel, and
an 8-bit reference channel, which is used for thresh-
olding, conditional operation, and masked operation,

and the data of the reference channel can only be
modified in the Programmable Interconnection Unit. If
the array has eight PEs, as shown in Fig. 11, after the
data flows through the array, eight morphological oper-
ations can be applied on one 18-bit image or two 9-bit
images according to the control signals given from the
control unit.

The detailed architecture of a single PE shown in
Fig. 12a has a sub word parallel ability. In each PE, it
has two 9-bit sub-PEs. A sub-PE can perform a 9-bit
dilation, erosion, conditional dilation, conditional ero-
sion, masked dilation, masked erosion, or no operation.
Both the 3 × 3 structuring element (8-connected) and
the cross-shaped structuring element (4-connected) can
be supported in this architecture. Note that each sub-
PE is designed with the Partial-Result-Reuse design
technique [6, 14] to achieve lower hardware cost. Only
four 9-bit two-input comparators (two comparators in
one MAX/MIN module) are needed to implement the
3 × 3 morphological operations in each sub-PE. D is
a delay element, or a register. W is the width of the
input image. Therefore, there are two long 9-bit delay
lines in each PE. Decision Logic can execute normal
operations, conditional operations, masked operations,
and no operations, with input data from the results of
normal morphological operations, original data from
the delay lines, reference data from the reference data
channel, and mask data from Mask Generator. The
mask data is “1” when the input of Mask Generator is
less than or equal to Thb and larger than or equal to
Tha; otherwise, the mask data is “0”. Combining two
sub-PEs, a PE can further perform 18-bit operations. It
is obvious that this hardware architecture can execute
all the operations described in Fig. 9b.

The Programmable Interconnection Unit between
two PEs can change the inter-connection of these two
PEs, which can make the proposed architecture more
flexible and maintain the high throughput as well. The
detailed architecture of Programmable Interconnection
Unit is shown in Fig. 12b. There are three routing

PE0
From Input

Stream
Register File

26 Programmable
Interconnection

Unit
PE7

Programmable
Interconnection

Unit

26 To Output 
Stream

Register File

.....PE1
Programmable
Interconnection

Unit

Tha

Thb

8

8

9 6 9 6 9 6

Instructions From IR

Figure 11 Architecture of programmable PE array.
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Figure 12 a Architecture
of a single PE, note that
each PE has two sub-PEs.
b Architecture of the
programmable
interconnection unit.
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switches (multiplexers) for a 9-bit MSB channel (MSB
9-bit of Data), a 9-bit LSB channel (LSB 9-bit of Data),
and an 8-bit reference channel. Referring to the instruc-
tions described in Fig. 9b, for the MSB channel, the
output of the routing switch could be the original MSB
data (ORI), the LSB data (swapped data, SWP), the

difference of MSB and LSB data (DIF), and mask data
in gray-level (MSK). Similar behavior can be found in
LSB channel. For the reference channel, the output
could be the original reference data (ORI), the com-
plement reference data (CMP), the difference of MSB
and LSB data (DIF), and original LSB data (LSB). This
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hardware architecture can achieve all the requirements
of Section 3 and Section 4.2.

Note that the combination of a PE and Program-
mable Interconnection Unit is a MacroPE. In Fig. 11,
there are eight MacroPEs.

4.5 Examples

Some examples are given in this subsection to make
it more easier to understand how the core operations
of image/video segmentation can be mapped to the

proposed architecture, as shown Fig. 13 and Fig. 14. In
Fig. 13a, the hardware accelerator for watershed trans-
form is shown, where each PE is programmed to per-
form a 18-bit masked erosion. The associated program
(firmware) is shown in Fig. 14a. Next, in Fig. 13b, the
hardware for edge detection Eq. 8 is also shown. The
associated firmware in Fig. 14b shows that the threshold
value we use is 25. Finally, Fig. 13c demonstrates the
hardware for edge fitting, and the firmware is shown in
Fig. 14c, which is programmed according to Eq. 9. Note
that the distance range of edges to be fitted is 5.

Figure 13 Example of
different configuration for
different operations:
a watershed; b edge
detection; c edge fitting. ME(16)

Ref

Initial Label
Image

Gradient
Image

ME(16)

Ref

.....
ME(16)

Ref

ME(16)

Ref

Label
Image

(a)

D(8)

E(8)

N

N

Mask
Generator

Th

0

255

N

E(8)

N

E(8)

(b)

D(8)

N

Ref

CDM

Edge

D(8)

N

Ref

.....

N

CE(8)

Ref

N

CE(8)

Ref

.....

N

E

Ref

N

E

Ref

.....

CD(8)

N

Ref

CD(8)

N

Ref

.....

D

N

Ref

N

E

Ref

Output

(c)



J Sign Process Syst (2011) 62:77–96 89

STH 0 0
LUN M4E M4E W ORI ORI ORI 1
STH 1 1
LUN M4E M4E W ORI ORI ORI 1
STH 2 2
...
EXT

(a)

STH 25 255
NOR N8D N8E B ORI ORI DIF 1
NOR NOP NOP B MSK MSK ORI 1
NOR NOP N8E B LSB ORI ORI 1
NOR NOP N8E B ORI LSB ORI 1
EXT

(b)

NOR N8D NOP B ORI ORI ORI 4
NOR N8D NOP B ORI SWP ORI 1
NOR NOP C8E B ORI ORI ORI 5
NOR NOP N8E B ORI ORI ORI 4
NOR NOP N8E B SWP ORI CMP 1
NOR C8D NOP B ORI ORI ORI 5
NOR N8D NOP B ORI SWP ORI 1
NOR NOP N8E B ORI ORI ORI 1
EXT

(c)

Figure 14 Firmware for a watershed transform, b edge detection,
and c edge fitting.

5 Architecture and Algorithm Optimization

In this section, some detailed architecture and algo-
rithm optimization issues for implementation are dis-
cussed, including delay line issues, hardware cost for
real-time watershed transform, and the pipelined-

parallel architecture. With the proposed implementa-
tion methods, the hardware cost can be further saved,
or the performance can be further enhanced.

5.1 Delay Line Issues

As shown in Fig. 12a, four 9-bit delay lines (the two W D
lines and (W − 2)D lines) and one 8-bit delay line (the
(W + 1)D line) are required for each PE. For a large
frame size and a large number of PEs, the hardware
cost of the delay lines will dominate the whole chip;
therefore, the delay lines should be careful designed.
The first way to reduce the hardware cost of a delay
line is to implement the delay line with dual-port on-
chip SRAM and a dedicated counter rather than shift
registers.

Another technique to shorten the delay line is the
tiling technique [14], which can be illustrated in Fig. 15.
The input image is firstly divided into several tiles, for
example, four tiles in Fig. 15a. For each tile, a padding
technique is then employed to generate a padded re-
gion, as shown in Fig. 15b with the following rule.

For every point (x, y) in the padded region,

if (x, y) ∈ I, the padded value P(x, y) = I(x, y),

otherwise, P(x, y) = I(i, j),

where (i, j) ∈ I and

distance[(x, y), (i, j)] < distance[(x, y), (m, n)]∀(m, n)

∈ I �= (i, j)

The purpose of the padded region is to provide a
guard region, in which the error propagation from the
boundary can occur. After the tile is processed, the pad-
ded region is removed before begin storing to memory.
With the padding technique, the boundary conditions

Figure 15 Tiling technique.
a The input image can be
divided into several tiles.
b The padding region
of each tile.

Tile 1 Tile 2 Tile 3 Tile 4 Padded Region

Tile

P

P

)b()a(
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of morphological operations can be handled well with-
out complicated control circuits. After all the tiles are
processed, the result is the same as when the whole
frame is processed at the same time; however, the
length of the delay line becomes about a quarter of
the original one, and three-fourths of the hardware cost
can be saved. The overhead of the tiling technique is
the increasing complexity of addressing and the longer
latency because of the padded regions.

5.2 Simplified Watershed Transform

The watershed transform discussed in Section 3.3 re-
quires a large amount of morphological operations for
the “loop until no change” (LUN) operations, which
implies the number of PEs should be very large for the
real-time watershed transform. To reduce the hardware
cost, some simplifying techniques for the watershed
transform are proposed and discussed in this subsec-
tion. The first frame of the sequence Table Tennis is
used as an example.

If the firmware shown in Fig. 14a is applied directly
on the gradient image, severe over-segmentation will
occur, as shown in Fig. 16a. 1,067 3 × 3 morphological
operations are needed to be employed to the whole
image to get the result. The clipping technique can solve
this problem with clipping gradient values less than or
equal to a threshold, ClipT H, to zero. An example with

ClipT H = 7 is shown in Fig. 16b, where 1,344 opera-
tions are required. The associated firmware is shown
in Fig. 17a. In order to achieve the real-time require-
ment, 40,320 morphological operations are needed to
be applied on the whole frame in one second, which
will require a large amount of PEs and an enormous
hardware cost. A log2 anamorphosis [24] can reduce
the 256 gray-levels to eight levels. Taking into account
both the clipping technique and log2 anamorphosis
technique, we can group the 256 gray-levels into six
levels: 0–7, 8–15, 16–31, 32–63, 64–127, and 128–256.
The result is demonstrated in Fig. 16c, which is very
similar to Fig. 16b, with only 756 operations. Note that
instead of adding a look-up-table (LUT) hardware in
the system [24], the log2 anamorphosis technique can
be easily employed by changing the firmware, as shown
in Fig. 17b.

From the experiments we found that the first level of
watershed transform often cost the largest number of
morphology operations. For example, in a test image
shown in Fig. 16, among the 756 operations of the
watershed transform with anamorphosis technique, 653
operations are executed in the first level, since the area
belongs to the first level is always the biggest. A local
flooding scheme is proposed to reduce the computation
in the first level. It can be illustrated by Fig. 18. It is
a divide-and-conquer scheme, where the input image
is divided into several slices as shown in Fig. 18. For

Figure 16 Simplified
watershed transform. a The
origin result of watershed
transform, where
over-segmentation is severe.
1,067 operations are required.
b Watershed with gradient
values lower or equal to
seven clipped to zero. 1,344
operations are required.
c Watershed with log2
anamorphosis gradient
values. 756 operations are
required. d Watershed with
log2 anamorphosis gradient
values and local flooding
scheme. 402.5 operations
are required.

)b()a(

)d()c(
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STH 0 7
LUN M4E M4E W ORI ORI ORI 1
STH 8 8
LUN M4E M4E W ORI ORI ORI 1
STH 9 9
...
EXT

(a)

STH 0 7
LUN M4E M4E W ORI ORI ORI 1
STH 8 15
LUN M4E M4E W ORI ORI ORI 1
STH 16 31
LUN M4E M4E W ORI ORI ORI 1
STH 32 63
LUN M4E M4E W ORI ORI ORI 1
STH 64 127
LUN M4E M4E W ORI ORI ORI 1
STH 128 255
LUN M4E M4E W ORI ORI ORI 1
EXT

(b)

Figure 17 Firmware for a watershed transform with clipping
gradient values lower or equal to seven to zero. b Watershed with
log2 anamorphosis gradient values.

the first level, firstly, the masked erosion operation is
applied only in region I until no change occurs, then
region II, and then region III. Finally, after the masked
erosion operation is applied in region IV, the next level
is processed as the way before for the whole image. An
example is shown in Fig. 16d, which is very similar to
Fig. 16c, except the over-segmentation problem may
occur near the boundary of the slices. The number of
operations to be applied in a quarter of the input frame
in the first level is 1,110, whose computation complexity
is equal to 1,110/4 = 277.5 3 × 3 morphological oper-
ations for a whole frame. For other levels, only 125
operations are required with the log2 anamorpho-
sis technique, namely, only 277.5 + 125 = 402.5 oper-
ations are required. In summary, the local flooding
scheme can dramatically reduce the computation com-
plexity without degrading the result of watershed trans-

Figure 18 Illustration of local
flooding scheme. I

II

III

IV

form. Note that, to implement the local flooding scheme
in the proposed morphological image processing accel-
erator, one only needs to change the parameters of the
control registers in the control unit from the system bus.

It also shows that the proposed reconfigurable hard-
ware morphological image processing accelerator is
very flexible. By changing the firmware and the values
in the control registers, new watershed algorithms can
be employed without re-designing the hardware.

5.3 Pipelined-Parallel Architecture

The architecture of the programmable PE array shown
in Fig. 11 is a pipelined architecture. A pipelined archi-
tecture can increase the processing speed with fixed in-
put and output data rate; however, the internal memory
size and the latency would become large as the number
of PEs increases. On the other hand, a parallel archi-
tecture can increase the processing speed with fixed
internal memory size; however, the input and output
data rate would increase so the required bit-width of
the system bus would also increase.

In order to make a good balance between internal
memory size and input/output data rate, when a large
number of PEs is required, we also propose a pipelined-
parallel array architecture, which is demonstrated in
Fig. 19. In this figure, there are four pipelined PE
arrays, which are similar to the array in Fig. 11, working
in parallel. For each PE, the length of the delay line
is a quarter of the width of the input image; there-
fore, the on-chip memory requirement of the pipelined-
parallel architecture is similar to that of the pipelined
architecture shown in Fig. 11 when the tiling technique
discussed in Section 5.1 is not employed. On the other
hand, the processing speed of the pipelined-parallel
architecture is four times faster since each pipelined PE
array can manipulate a tile in Fig. 15, namely, four tiles
are processed simultaneously, so only a quarter of the
clock cycles are required for this architecture to process
a frame. Note that, since the input and output data rate
becomes four times that of the pipelined architecture,
the frequency to accessing the system bus should be
faster than the working frequency of the PE array to
keep the balance between the memory bandwidth and
the processing speed.

When the real-time watershed transform for SIF
frames is taken into consideration, with the simplified
watershed transform proposed in the previous sub-
section, 32 MacroPEs are required when the working
frequency is 40 MHz, and the working frequency of the
system bus is 120 MHz. The hardware architecture of
the reconfigurable PE array is shown in Fig. 19.
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Figure 19 Pipelined-parallel
architecture the
reconfigurable PE array.
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6 Implementation Results and Analysis

6.1 Synthesis Results

The result of hardware implementation is shown in
Table 4, where the circuit is synthesized with the
SYNOPSYSTM Design Compiler. The implementation
results of an eight-MacroPE pipelined architecture with
tiling technique and a 32-MacroPE pipelined-parallel
architecture are listed in this table. The operation fre-
quency is targeted to 40 MHz. With the eight-MacroPE
pipelined architecture, a processing speed of 3,100
18-bit morphological operations per second for a SIF
image or 6,200 9-bit morphological operations per sec-
ond for a SIF image can be achieved, which is suf-
ficient for real-time video segmentation [7]. With a
32-MacroPE pipelined-parallel architecture, for a SIF
image, the processing speed of 12,400 18-bit morpho-
logical operations per second or 24,800 9-bit morpho-
logical operations per second can be achieved, which is
sufficient for a real-time watershed transform with the
proposed simplified techniques. The number of PEs can

Table 4 Result of hardware implementation.

Unit Gate count Internal memory size

Single MacroPE 4,441 4,576b
PE 3,901 4,576b
Programmable
Interconnection unit 533 0b

Control unit 6,614 0b
Total (8 MacroPEs) 41,519 36,608b
Total (32 MacroPEs) 148,726 146,432b

be further reduced if the target frame size and the frame
rate is reduced, or when the target operation frequency
is increased. The internal memory size is only 5% and
20% of a frame memory for the eight-MacroPE version
and the 32-MacroPE version, respectively, that is, no
internal frame buffer is required in this architecture to
achieve high throughput.

6.2 Prototype Chip Implementation

The prototype chip layout of the proposed morpho-
logical image processing accelerator with Control Unit
and Reconfigurable PE Array with eight MacroPEs
is demonstrated in Fig. 20. Half of the chip area is
occupied by the on-chip memory. The specification of
the chip is shown in Table 5. The technology is TSMC
0.25 μm 1P5M. The chip size is 4.76 × 5.74 mm2. Note
that, this chip is not fabricated. All the numbers come
from the post-layout simulation.

6.3 System Performance

The estimated system performance is shown in
Table 6. The host computer is a low-end computer with
a Celeron 300 MHz microprocessor, and the system bus
is a PCI bus. Assume that no other peripheral shares
the system bus with the accelerator. Our algorithm and
the watershed transform are applied on a SIF sequence.
It shows that without the hardware accelerator, the
processing speed is far behind real-time requirement
(33 ms/frame). With the accelerator, the processing
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Figure 20 Layout of the prototyping chip.

time of our algorithm is 11.99 ms, and the processing
time of watershed transform is 31.41 ms, which can
achieve real-time requirement. Note that the process-
ing time should be the maximum of the processing
time of the software part and the hardware part since
the host CPU and the accelerator can function at the
same time. It is shown that even the host is a low-
end computer, the system can still achieve the real-time
requirement with the proposed hardware accelerator.

Table 5 Features of the prototyping chip.

Technology TSMC 0.25 μm 1P5M
Package 144 CQFP (140 Pads)
Chip size 4.76 mm × 5.74 mm
Power supply 2.5 V
Power consumption 600 mW @ 40 MHz
Gate count (without memory) 41,519
Transistor count (with memory) 845,999
Processing speed@40 MHz 30 SIF frames/s (video

segmentation with [7])
3,100 18-bit 3 × 3

morphological operations
second on a SIF image

6,200 9-bit 3 × 3
morphological operations
per second on a SIF image

On-chip memory 8 128×48 dual-port RAM

Table 6 System performance estimation.

Algorithm Software only HW/SW HW/SW
(ms/frame) co-work co-work

SW part HW part
(ms/frame) (ms/frame)

Ours [7] 223.24 11.99 9.98
Watershed 453.24 25.54 31.41

6.4 Discussion of the Reconfigurable Architecture

Table 7 shows the detailed hardware cost for each com-
ponent of a MacroPE. The memory control unit is used
to control the dual-port on-chip RAM as delay lines.
The essential logic is the logic to implement two ded-
icated 9-bit parallel morphological operations, where
only 9-bit comparators, 9-bit registers, and the memory
control unit are included. On the other hand, the pro-
grammable logic is used to give the programmability to
the PE, where the mask generation unit, programmable
logic in PE, and the interconnection unit are included.
It is shown that the overhead of programmability, only
about half of the essential logic, is acceptable. With this
overhead, 215 different configurations can be achieved,
where the dedicated hardware has only one configura-
tion. Therefore, the programmable logic is hardware-
cost-efficient since it can provide high programmability
with acceptable hardware cost overhead to accelerate
various morphological operations to support different
kinds of segmentation algorithms. Besides, the pro-
gramming time of this reconfigurable hardware is fast
since it can be configured with firmware and the control
unit can reconfigure the array without any help from
the host CPU and the system bus.

Table 8 shows the comparison between the pro-
posed architecture with other watershed architectures.
In Kuo’s architecture [16], only the core of the flooding
operation is implemented, which means that the gra-
dient, sorting, and the priority queue is not included

Table 7 Detailed hardware cost for each component of a
MacroPE.

Component Gate count

9-bit Comparatora 984
9-bit Registerb 368
Memory control 1,641
Mask generation 95
Programmable logic in PE 820
Interconnection unit 533
Essential logic 2,993
Logic for programmability 1,448
Total 4,441

aEight two-input comparator.
bEight registers for partial-result-reuse.
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Table 8 Comparison with other watershed architecture.

Architecture Software Gate count Achieve Programm-
control real-time ability
loading

[16] Heavy 2,965 Hard No
[22] Light 3,548,160 Yes No
This work Light 148,726 Yes Yes

in the hardware. It is implied that the software con-
trol loading is high, and it is hard to achieve real-
time requirement. Noguet’s work [22] use a large array
processor for watershed transform, where each pixel is
processed with a PE. It can achieve real-time; however,
the hardware cost is enormous. Moreover, the gradient
operation is not implemented in this architecture. Aid
from software is still required. The proposed recon-
figurable morphological image processing accelerator
can also achieve real-time requirement. Since the gra-
dient operation and flooding operation can be both
implemented in this reconfigurable accelerator, and the
accelerator supports self-control ability, the software
control loading is lighter. In addition, the hardware cost
is much smaller than Noguet’s work [22]. Therefore,
the proposed accelerator can support both gradient
and flooding operations with less gate count. That is
because different operations can share the same recon-
figurable hardware resource in different time slots, and
the hardware resource can also be shared spatially for
every pixel with off-chip memories to store the partial
results. It is obvious that the proposed reconfigurable
architecture is more feasible and more efficient.

6.5 Comparison with Previous 1-D Array
Processor Architectures

Several 1-D array processor architectures have been
proposed. Here, the proposed reconfigurable morpho-
logical image processing accelerator is compared with
these previous works. Warp processor is a systolic array
computer [2], where processors are connected with
a pre-defined topology, and the programs for all the
processors are identical. Several concepts of stream
processing is proposed with Warp processor. However,
it is designed for general-purpose applications and is
not optimized for image processing. CLIP7A is another
1-D array processor [8]. It is an SIMD array with auton-
omy, and the interconnection between processors can
be flexibly changed for different modes. CLIP7A is also
designed for general-purpose applications. IMAP-CE
is another SIMD 1-D array processor [17]. It is designed
for video recognition, and it is composed of 128 VLIW

processors and can achieve a high processing capability
of 51.2-GOPS. In order to achieve a high hardware uti-
lization of the SIMD architectures, a high performance
memory system is needed to feed-in the required data
for each processing element. For example, large shift
register and line buffer arrays are designed for IMAP-
CE, which leads to a large hardware cost. That is, the
high performance comes at much higher hardware cost
and power consumption than the proposed morpholog-
ical image processing accelerator.

Two previous works are highly related to the pro-
posed architectures, where similar design concepts
are also supported. Cytocomputer is a pipeline image
processor [18], where delay lines are also included in
each processor to improve the efficiency of image data
accessing. It also analyzes the advantages of linear array
than other 2-D mesh arrays: the I/O bandwidth is more
reasonable, and the required processing time may be
shortened when the time of data-loading is also con-
sidered. However, the design of processing elements
are not mentioned in Cytocomputer, and the intercon-
nections between the processors are fixed, which limits
the target applications to only simple systolic image
processing algorithms. On the other hand, PipeRench
is a general-purpose reconfigurable array architecture
[10], where the concept of reconfigurable interconnec-
tion is proposed, but it is not optimized for image
processing.

Compared with these works, the proposed recon-
figurable morphological image processing accelerator
is also a 1-D array architecture. The architectures of
the processing elements and interconnection units are
optimized for morphological image processing. In order
to lower the I/O bandwidth requirement, it is not an
SIMD array processor [8, 17]. The high performance
is achieved by many processors working in a pipeline
with different assigned works, like Cytocomputer [18].
Besides, the flexibility of the dataflow is achieved by the
reconfigurable interconnection [10].

7 Conclusion and Future Works

A hardware accelerator for video object segmentation
is proposed in this paper. From the analysis of existing
video segmentation algorithms, we find that most of
the core operations can be implemented with different
morphological operations. Therefore, the proposed ac-
celerator is based on a reconfigurable morphological
image processing PE array, and a stream processing
concept is employed in the architecture design to in-
crease the efficiency. Many examples are demonstrated
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to show that this instruction set architecture is very
suitable to be used to accelerate the core operations of
video segmentation. Simulation shows that this accel-
erator can accelerate most important video segmenta-
tion algorithms to achieve real-time. It can be used to
accelerate the change detection and background regis-
tration based video segmentation with eight MacroPE
and can achieve a real-time watershed transform with
32 MacroPEs at 40 MHz. It is also shown that the
hardware cost of the proposed architecture is low be-
cause the memory requirement can be reduced with
the proposed tiling technique and pipelined-parallel
architecture, and the hardware resource can be shared
not only spatially but also temporally with the reconfig-
urability of this architecture.

There are several limitations for this reconfigurable
morphological image processing accelerator. First of
all, only flat rectangle or disk-shaped structuring ele-
ments are supported. It will limit the usage of other
powerful morphological operations, especially for bi-
nary image analysis, such as the hit-or-miss operator
[26, 28]. However, we believe that the supported mor-
phological operations are enough for the applications
of image/video segmentation. In addition, the threshold
value is fixed in this accelerator and can still be changed
for each frame by cooperating with the host CPU.
The locally adaptive threshold is not supported in our
design. Moreover, there are still some operations of
video segmentation cannot be well implemented with
morphological operations. For these operations, it is
recommended to integrate other hardware accelerators
into the system, or they can also be implemented with
the CPU or other processors in the system.

In the current stage, the proposed reconfigurable
PE array is designed to accelerate the morphology
operations for video object segmentation. We believe it
can be further extended to support more applications
and other operations such as general region growing
operations. In addition, the proposed PE architecture
can be considered to be integrated into other vision
processors to enhance the performance for executing
morphology operations. Furthermore, the proposed ac-
celerator can only be used to accelerate morphology
operations. To design a complete image/video analysis
system, other processors and accelerators are required
to be integrated, which will be considered as our future
works.

Acknowledgements The authors would like to thank chip
implementation center (CIC) for EDA tool and design flow
support.

References

1. sourceforge.net (2008). Open computer vision library
(OpenCV). http://sourceforge.net/projects/opencvlibrary/.

2. Annaratone, M., Arnould, E., Gross, T., Kung, H. T., &
Lam, M. S. (1986). Warp architecture and implementation.
In Proc. international symposium on computer architecture
(pp. 346–356).

3. Canny, J. (1996). A computational approach to edge detec-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-8(6), 679–698.

4. Chien, S. Y., Huang, Y. W., & Chen, L. G. (2003). Predictive
watershed: A fast watershed algorithm for video segmenta-
tion. IEEE Transactions on Circuits and Systems for Video
Technology, 13(5), 453–461.

5. Chien, S. Y., Huang, Y. W., Hsieh, B. Y., Ma, S. Y., &
Chen, L. G. (2004). Fast video segmentation algorithm with
shadow cancellation, global motion compensation, and adap-
tive threshold techniques. IEEE Transactions on Multimedia,
6(5), 732–748.

6. Chien, S. Y., Ma, S. Y., & Chen, L. G. (2001). A partial-
result-reuse architecture and its design technique for mor-
phological operations. In Proc. of 2001 IEEE international
conference on acoustics, speech, and signal processing vol. 2,
(pp. 1185–1188).

7. Chien, S. Y., Ma, S. Y., & Chen, L. G. (2002). Efficient mov-
ing object segmentation algorithm using background registra-
tion technique. IEEE Transactions on Circuits and Systems
for Video Technology, 12(7), 577–586.

8. Fountain, T. J., Matthews, K. N., & Duff, M. J. B. (1988).
The CLIP7A image processor. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 10(3), 310–319.

9. Garrido, L., Oliveras, A., & Salembier, P. (1997). Mo-
tion analysis of image sequences using connected opera-
tors. In Proc. of visual communication and image processing
(pp. 546–557).

10. Goldstein, S., Schmit, H., Budiu, M., Cadambi, S., Moe, M., &
Taylor, R. (2000). PipeRench: A reconfigurable architecture
and compiler. IEEE Computer, 33(4), 70–77.

11. Kapasi, U., Rixner, S., Dally, W., Khailany, B., Ahn, J. H.,
Mattson, P., et al. (2003). Programmable stream processors.
Computer, 36(8), 54–62.

12. Kim, C., & Hwang, J. N. (2002). Fast and automatic video
object segmentation and tracking for content-based applica-
tions. IEEE Transactions on Circuits and Systems for Video
Technology, 12(2), 122–129.

13. Kim, M., Choi, J. G. D., Kim, H. L., Lee, M. H., Ahn, C.,
& Ho, Y. S. (1999). A VOP generation tool: Automatic seg-
mentation of moving objects in image sequences based on
spatio-temporal information. IEEE Transactions on Circuits
and Systems for Video Technology, 9(8), 1216–1226.

14. Kishore, A. D., & Srinivasan, S. (2003). A distributed mem-
ory architecture for morphological image processing. In Proc.
international conference on information technology: Coding
and computing (pp. 536–540).

15. Klein, J. C., & Peyrard, R. (1989). Pimm1, an image process-
ing ASIC based on mathematical morphology. In Proc. of
second annual IEEE ASIC seminar and exhibit.

16. Kuo, C. J., Odeh, S. F., & Huang, M. C. (2001). Image seg-
mentation with improved watershed algorithm and its FPGA
implementation. In Proc. of the 2001 IEEE international sym-
posium on circuits and systems, vol. 2, (pp. 753–756).

17. Kyo, S., Koga, T., Okazaki, S., & Kuroda, I. (2003). A 51.2-
GOPS scalable video recognition processor for intelligent

http://sourceforge.net/projects/opencvlibrary/


96 J Sign Process Syst (2011) 62:77–96

cruise control based on a linear array of 128 four-way VLIW
processing elements. IEEE Journal of Solid-State Circuits,
38(11), 1992–2000.

18. Lougheed, R. M., & McCubbrey, D. L. (1980). The Cyto-
computer: A practical pipelined image processor. In Proc.
international symposium on computer architecture (pp. 217–
277).

19. Mech, R., & Wollborn, M. (1998). A noise robust method for
2D shape estimation of moving objects in video sequences
considering a moving camera. Signal Processing, 66(2),
203–217.

20. Meier, T., & Ngan, K. N. (1998). Video segmentation for
content-based coding. IEEE Transactions on Circuits and
Systems for Video Technology, 9(8), 1190–1203.

21. MPEG Video Group (2001). Annex F: Preprocessing and
postprocessing. ISO/IEC JTC 1/SC 29/WG11 N4350.

22. Noguet, D. (1997). A massively parallel implementation of
the watershed based oncellular automata. In Proc. of the
1997 IEEE international conference on application-specific
systems, architecture and processors (pp. 42–52)

23. Peleg, A., & Weiser, U. (1996). MMX technology extension
to the Intel architecture. IEEE Micro, 16(4), 42–50.

24. Peyrard, R., Gauthire, M., & Klein, J. C. (1994). Real-
time road segmentation using a morphological multi-pipeline
processor. In Proc. of the intelligent vihecles symposium
(pp. 290–295).

25. Salembier, P., Oliveras, A., & Garrido, L. (1998). Antiex-
tensive connected operators for image sequence processing.
IEEE Transactions on Image Processing, 7(4), 555–570.

26. Serra, J. (1982). Image analysis and mathematical morphol-
ogy. London: Academic.

27. Shamim, A., & Robinson, J. A. (2002). Object-based video
coding by global-to-local motion segmentation. IEEE Trans-
actions on Circuits and Systems for Video Technology, 12(12),
1106–1116.

28. Soille, P. (2007). Morphological image analysis. New York:
Springer.

29. Tsai, Y. P., Lai, C. C., Hung, Y. P., & Shih, Z. C. (2005). A
Bayesian approach to video object segmentation via merging
3-D watershed volumnes. IEEE Transactions on Circuits and
Systems for Video Technology, 15(1), 175–180.

30. Tsaig, Y., & Averbuch, A. (2002). Automatic segmentation
of moving objects in video sequences: A region labeling ap-
proach. IEEE Transactions on Circuits and Systems for Video
Technology, 12(7), 597–612.

31. Vincent, L., & Soille, P. (1991). Watersheds in digital spaces:
an efficient algorithm based on immersion simulations. IEEE
Transactions on Pattern Analysis and Machine Intelligece,
13(6), 583–598.

32. Wang, D. (1998). Unsupervised video segmentation based
on watersheds and temporal tracking. IEEE Transactions on
Circuits and Systems for Video Technology, 8(5), 539–546.

33. Wiatr, K. (1998). Pipeline architecture of specialized recon-
figurable processors in FPGA structures for real-time im-
age pre-processing. In Proc. of 24th Euromicro conference
(pp. 25–27).

34. Wiatr, K. (2002). Median and morphological specialized
processors for a real-time image data processing. EURASIP
Journal on Applied Signal Processing, 2002(1), 115–121.

35. Xu, H., Younis, A. A., & Kabuka, M. R. (2004). Auto-
matic moving object extraction for content-based applica-
tions. IEEE Transactions on Circuits and Systems for Video
Technology, 14(6), 796–812.

36. Zhang, D., & Lu, G. (2001). Segmentation of moving objects
in image sequence: A review. Circuits Systems Signal Process-
ing, 20(2), 143–183.

Shao-Yi Chien received the B.S. and Ph.D. degrees from the De-
partment of Electrical Engineering, National Taiwan University
(NTU), Taipei, Taiwan, R.O.C. in 1999 and 2003, respectively.
During 2003 to 2004, he was a research staff in Quanta Research
Institute, Tao Yuan Shien, Taiwan, R.O.C. In 2004, he joined the
Graduate Institute of Electronics Engineering and Department
of Electrical Engineering, National Taiwan University, where he
is now an Associate Professor. His research interests include
video segmentation algorithm, intelligent video coding technol-
ogy, image processing, computer graphics, and associated VLSI
architectures.

Liang-Gee Chen received the B.S., M.S., and Ph.D. degrees in
Electrical Engineering from National Cheng Kung University,
Tainan, Taiwan, R.O.C. in 1979, 1981, and 1986, respectively. In
1988, he joined the Department of Electrical Engineering, Na-
tional Taiwan University. Currently, he is the Distinguished Pro-
fessor of Department of Electrical Engineering and the Deputy
Dean of office of Research and Development in National Taiwan
University, Taipei, Taiwan, R.O.C. Since 2007, he also serves
as a Co-Director General of National SoC Program. He is the
IEEE Fellow from 2001. His research interests include DSP
architecture design, video processor design, and video coding
systems. He has published over 350 papers and 30 patents.

Dr. Chen has served as an Associate Editor of IEEE Trans-
actions on Circuits and Systems for Video Technology and other
international technical journals. He is also involved several IEEE
technical committees, including the TPC Chair of 2009 IEEE
ICASSP and the TPC chair of ISCAS 2012. He has received
several outstanding research awards and outstanding industrial
technology contribution awards from NSC. His group has won
the DAC/ISSCC Student Design Contest for three times since
2004, and had the honor of Student Paper Contest at ICASSP
2006.


	Reconfigurable Morphological Image Processing Accelerator for Video Object Segmentation
	Abstract
	Introduction
	Analysis of Existing Algorithms
	Mapping Core Operations to Morphological Operations
	Gradient
	Post-Processing of Change Detection Based Algorithm
	Watershed Transform
	Hausdorff Distance
	Edge Detector
	Edge Fitting

	Proposed Architecture
	Overview of the Proposed Hardware Accelerator
	Instruction Set Architecture
	Architecture of Control Unit
	Architecture of Reconfigurable PE Array
	Examples

	Architecture and Algorithm Optimization
	Delay Line Issues
	Simplified Watershed Transform
	Pipelined-Parallel Architecture

	Implementation Results and Analysis
	Synthesis Results
	Prototype Chip Implementation
	System Performance
	Discussion of the Reconfigurable Architecture
	Comparison with Previous 1-D Array Processor Architectures

	Conclusion and Future Works
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


